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Abstract

While automated text analysis is getting extremely popular and image analysis is

gaining interest, multi-modal analysis that combines both text and image information

remains rare. However, many text or image data are intrinsically multi-modal, such as

social media posts. This study compares three practical workflows for clustering text–

image pairs: (1) label-level combination, which clusters text and image separately and

combines the resulting labels; (2) vector-level combination, which clusters concatenated

embeddings extracted from each modality; and (3) joint embedding, which clusters

unified representations from multimodal embedding models such as CLIP. We also

introduce a set of reusable evaluation tools to help researchers compare, validate, and
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benchmark multimodal clustering workflows: the Adjusted Mutual Information (AMI)

to assess text-image alignment, the S_DbW index to evaluate number of clusters, and

the within-cluster consistency to validate interpretability. We validate the methods on

a Chinese protest dataset from social media with 336,921 text-image pairs, and test

robustness and scope conditions using a smaller U.S. news dataset on gun violence

with 1,297 news headlines. We find that when text and image provide distinct, non-

overlapping information, the second and third methods outperform the first. This

study serves as a bridge between the text-as-data and image-as-data communities, as

well as computational social science.

1 Introduction

Empirical social science has undergone a transformation—from data scarcity to data abun-

dance (Grimmer et al., 2021). Digitized archives, government records, and user-generated

content now provide access to millions of text and image documents. This abundance has

fueled the development of automated methods, particularly for analyzing text. Over the

past decade, topic modeling and other unsupervised techniques have become central tools

for uncovering structure in large text corpora (Grimmer and Stewart, 2013; Blei et al., 2003;

Wilkerson and Casas, 2017).

Although most methodological innovations have centered on text analysis, the most dra-

matic surge in data has come from visual content. Visual platforms like Instagram, YouTube,

and TikTok now dominate the social media ecosystem (Auxier and Anderson, 2021), sur-

passing traditional text-centered platforms. However, most existing work focuses on su-

pervised learning tasks—mapping images onto violence, race, protest, or sentiment labels

(Steinert-Threlkeld et al., 2022; Casas and Williams, 2017; Williams et al., 2020). By con-

trast, unsupervised image analysis—and particularly clustering—remains underdeveloped in

social science research (Peng, 2018; Zhang and Peng, 2024). This gap is surprising given that

unsupervised clustering is often the first step in exploring massive datasets and has driven
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much of the growth in text-as-data research.

Even more rare is the integration of text and image to perform joint clustering. This gap

is particularly problematic because real-world social media posts, news articles, and political

communications rarely rely on a single mode of communication—they strategically combine

visual and textual elements to frame events and guide interpretation. Decades of psychology

research show that people process text and visual information through parallel cognitive

channels: visuals are often processed more intuitively, leave longer-lasting impressions, and

are quicker to recall, while text conveys abstract and complex ideas more precisely (Paivio,

1990; Sweller et al., 1998). When texts and images convey similar messages, they can improve

understanding and persuasion (Mayer, 2002; Powell et al., 2015; Wittenberg et al., 2021),

and help information extraction (Steinert-Threlkeld et al., 2022). Other times, texts and

images convey independent information (Zhang and Pan, 2019; Casas and Williams, 2019;

Joo and Steinert-Threlkeld, 2022). Yet again, images may even contradict text; for instance,

Gibson and Zillmann (2000) showed people peaceful vs. violent protest images with the

same headlines and found that people’s perceptions of legitimacy shifted differently. Thus,

analyzing text or image alone risks missing both these reinforcing and countervailing effects,

motivating a clustering approach that treats each pair as a unified unit.

We propose an unsupervised multimodal clustering pipeline that converts text and images

into low-dimensional embeddings via pre-trained models, then applies standard clustering

algorithms (e.g., K-Means and HDBSCAN). Our focus is on the first step: which strategy

for converting text–image pairs into numeric representations (i.e., embeddings) produces the

most effective clustering solutions? To answer this, we compare three general methods—

label-level combination (cluster each modality separately), vector-level combination (con-

catenate per-modality embeddings before clustering), and joint embedding (use multimodal

models to produce unified text–image vectors). While specific embedding models may evolve,

these three strategies cover the full range of practical approaches.

To compare how these three embedding methods as well as other modeling choices impact

3



clustering results, we employ a general-purpose evaluation framework that serves both to

compare methods and to optimize clustering within each approach. Our toolkit includes

Adjusted Mutual Information (AMI) to quantify text–image alignment (which indicates when

joint clustering is necessary), the S_DbW index to score cluster quality and guide selection

of the number of clusters, a data-loss metric that tracks the share of observations pruned

when clusters become too small to interpret, and human coding to assess topical coherence.

We implemented our clustering pipeline and evaluation framework on a dataset (CASM)

containing 336,921 Chinese social media posts discussing offline protest events. Each post

includes both textual and visual content. We found that texts and images contain comple-

mentary information in this dataset. Both joint approaches (vector-level concatenation and

joint embedding) markedly outperform label-level clustering while incurring far less data

loss. We also tested our framework on a supplementary dataset with 1,297 gun violence

news articles in the US (BU-NEmo). In this dataset, headline text is predictive of image

content, so the two joint methods do not show substantive gains over the baseline label-level

combination. Taken together, these results indicate that joint clustering is most valuable

when the two modalities convey distinct yet complementary information; when they largely

overlap, all three methods can produce satisfactory clustering results.

This study bridges the text-as-data (Grimmer and Stewart, 2013) and image-as-data (Joo

and Steinert-Threlkeld, 2022; Zhang and Pan, 2019) literatures by proposing a practical

framework for joint clustering of multimodal documents. We show that when text and

images convey complementary information, joint clustering methods significantly outperform

modality-specific clustering. We also provide researchers with diagnostic tools to determine

whether their data would benefit from joint analysis and empirical guidelines for when single-

modal approaches are sufficient. Our findings, validated on Chinese social media posts about

protests and U.S. news coverage of gun violence, offer concrete guidance for scholars working

with multimodal data in computational social science (Grimmer et al., 2021).

Section 2 reviews prior work on text-as-data and image-as-data methods and motivates
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the need for multimodal clustering. Section 3 introduces our three combination strategies

for combining text and image embeddings, along with our evaluation toolkit. Section 4

applies these methods to the CASM protest dataset and presents clustering results. Section

5 provides diagnostic analysis of when joint clustering is most effective. Section 6 replicates

the analysis on the gun violence dataset to establish scope conditions and assess robustness.

Section 7 concludes.

2 Foundations of Multimodal Clustering

In this section, we establish when multimodal clustering is necessary, review how texts and

images are transformed into embeddings, and discuss clustering algorithms commonly used

with these representations.

2.1 When Is Multimodal Clustering Necessary?

Sometimes texts and images exhibit a high cross-modality correlation, meaning that one can

predict the other with near certainty. In the simplest case, both modalities convey the iden-

tical content, such as a social-media post captioned ”apple” accompanied by a photograph

of that apple. Alternatively, text and image may deliver different types of information yet

often co-occur, like a financial news headline that is often paired with a Wall Street photo,

though they are not exactly the same. Although these cases represent semantically different

relationships, both demonstrate strong cross-modal correlation patterns. In these cases, the

necessity of conducting joint text-image clustering is smaller.

In general, however, text and images often convey complementary yet distinct informa-

tion, so that a single post may communicate different messages through its caption and its

photograph. For example, the caption ”stay strong” could accompany either a protest scene

or a tranquil landscape—two very different messages that text-only clustering would treat

as identical. The text caption can express abstract judgments, intentions or emotions—such
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as concern, solidarity or outrage—while the accompanying image presents concrete visual

details of people, objects and settings without explicit commentary. In these situations,

clustering on text alone may miss important distinctions for visual information, and vice

versa. Hence, joint clustering becomes necessary.

Having shown why joint clustering can be useful, we next outline the two technical

ingredients that enable it—embeddings and clustering algorithms—before detailing our own

approach in Section 3.

2.2 Pre-requisites: transform texts and images into embeddings

2.2.1 Text representation

Effective joint clustering depends critically on how texts and images are transformed into

vector representations. Traditional text clustering approaches in social science, particu-

larly topic modeling, rely on document-term matrix representations where each document

becomes a long, sparse vector (often 10,000+ dimensions) with most elements being zero

(Grimmer and Stewart, 2013; Goldberg and Levy, 2014).1 These sparse representations

consume significant computing resources and make multimodal integration challenging.

Modern text embedding techniques offer a solution by using neural networks to create

dense, low-dimensional vectors (typically below 1,000 dimensions). Early approaches like

word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) used shallow neural

networks to create word-level embeddings, which could then be aggregated into document

representations. The major breakthrough came with Transformer-based models like BERT

(Vaswani et al., 2017), which use deeper neural networks to directly encode sentences, para-

graphs, and entire documents into dense vector representations.

2.2.2 Image representations

For images, embedding techniques convert visual content into dense vector representa-

tions with dimensions typically ranging from several hundreds to several thousands. The
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key breakthrough occurred with convolutional neural networks (CNNs), particularly after

AlexNet in 2012 (Krizhevsky et al., 2012) . More recently, Vision Transformers have adapted

the Transformer architecture from natural language processing to image analysis (Dosovit-

skiy et al., 2020), showing competitive or superior performance to CNNs. Recent work has

successfully applied these deep learning techniques to automated image clustering for social

science applications (Caron et al., 2018; Zhang and Peng, 2024).

2.3 Clustering algorithms

After texts or images are transformed into dense numeric vectors, scholars can apply clus-

tering algorithms to automatically group similar items and assign topic labels. The number

of available clustering algorithms is vast, and comprehensive reviews can be found in Hastie

et al. (2009).

Since our primary goal is to compare data representation strategies rather than clustering

algorithms, we used two widely used methods from different algorithmic families:

• K-Means, a centroid-based method. It assigns points based on distance to cluster

centroids.

• HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise),

a density- and hierarchy-based method introduced by Campello et al. (2013). HDB-

SCAN does not assume spherical geometry and can detect clusters of arbitrary shapes.

Although clustering algorithms are abundant and varied, our aim is not to exhaustively

compare them, nor can we. Instead, we test whether our vectorization strategies yield

consistent clustering results across two distinct clustering paradigms. We find that the

relative performance of the representation methods remains robust across both K-Means

and HDBSCAN. For simplicity, we present the results from K-Means as the main findings

in this article and provide metrics from HDBSCAN clustering in the Appendix.
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3 Methods for Joint Text-Image Clustering

Our goal is to conduct unsupervised clustering on documents consisting of both text and

images. This process involves three main steps:

• Representation learning: Map texts and images into numeric vectors, or embeddings,

that can be processed by clustering algorithms. This step includes choices about how

to encode each modality and how to combine them.

• Grouping: Apply clustering algorithms to assign these embeddings into distinct clus-

ters. This involves selecting an algorithm (e.g., K-Means or HDBSCAN) and setting

parameters such as the number of clusters.

• Interpretation and evaluation: Analyze the resulting clusters by assigning descriptive

labels and assessing their quality through both internal metrics and human validation.

Our main contribution lies in the representation learning stage. We compare three meth-

ods for representing a text-image pair as vectors. Figure 1 illustrates their workflows. The

key distinction among them lies in when the text and image data are transformed and merged

into a joint embedding.

A second contribution lies in our evaluation framework (Section 3.4), which allow us

to systematically compare different clustering solutions. We do not claim novelty in the

clustering step itself, which is essential to complete the pipeline but is beyond the scope of

this article (see Section 2.3 for reviews).

3.1 Baseline Method: label-level combination

The first and simplest method proceeds by running text and image clustering algorithms

separately, obtaining cluster labels for each modality, and then combining them together.

The left panel of Figure 1 visualizes this approach. Specifically, the original data are first

assigned to m distinct categories based on the textual information and n distinct categories
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Figure 1: Visualization of three joint text-image clustering methods

based on the images. By taking the concatenation of these categorical labels, we obtain a

total of m× n categories for the data sample.

3.2 When to Use Label-Level combination vs. Joint Clustering?

The effectiveness of label-level combination depends critically on the degree of cross-modal

alignment between text and image, as discussed in Section 2.1. To help researchers decide

whether joint clustering is needed, we introduce a simple diagnostic that quantifies cross-

modal alignment: Adjusted Mutual Information (AMI).

Diagnostic Based on AMI: Do We Need Joint Clustering? Mutual Information

(MI) measures how much knowing one variable reduces uncertainty about another. In our

context, it quantifies how much information the clustering of one modality (e.g., text) reveals

about the clustering of the other (e.g., image). We use Adjusted Mutual Information (AMI),

which adjusts for chance alignment and scales the result to fall between 1 (perfect agreement)

and 0 (no better than chance). A full mathematical definition is provided in Appendix A.1.

High AMI values (close to 1) suggest strong cross-modal correspondence—each text clus-

ter closely predicts its associated image cluster. In this case, separate clustering on each
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modality already captures the joint structure, and label-level combination suffices. When

AMI approaches 0, however, a single text topic links to many different visual patterns (and

vice-versa), so separate analyses cannot reliably infer one modality from the other. Under

such low-correlation conditions, joint text–image clustering methods (vector-level and joint

embedding) become essential for exploiting complementary information, as we discuss next.

3.3 Joint clustering

Vector-level combination Vector-level combination aims to merge text and image vec-

tors into a single vector, which is then fed into grouping algorithms (middle panel of Figure 1).

We use text embedding algorithms to transform the textual component of a document into a

p-dimensional vector, and image embedding algorithms to transform its visual content into a

q-dimensional vector. For instance, we can use pre-trained models such as Word2Vec, GloVe,

or BERT, or more recent LLM embedding models from OpenAI and Google Gemini to gen-

erate text embeddings.2 Similarly, we use pre-trained models such as ImageNet VGG16 or

more recent Google Vertex AI’s image or multimodal embedding models to map images into

dense vector representations. We then concatenate the p-dimensional text vector and the

q-dimensional image vector into a single (p+ q)-dimensional embedding for clustering.

Joint embedding The third method treats text-image pairs as a unity from the beginning

(right panel of Figure 1). This is made possible by the emergence of multimodal models in

the past several years. These multi-modal pre-trained models can take image-text pairs

(e.g., tweets with both text and images) as their training data, and learn to jointly map

them into a single embedding vector in the same vector space (see Figure 1). The first

breakthrough was the open-sourced Contrastive Language-Image Pre-training (CLIP) model

released by OpenAI in 2021, which is trained on over 400 million text-image pairs collected

from the Internet (Radford et al., 2021; Srinivasan et al., 2021), and its variants.3 There

have been more commercial multimodal releases since then, such as Google Vertex-AI or
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Amazon Titan 4 By training on diverse image–text pairs, multimodal models learn common

and uncommon co-occurrence patterns, providing a useful knowledge base for clustering on

researchers’ specific datasets.

3.3.1 Summary and Practical Guidance

To help researchers choose between the three clustering workflows, we compare their key

trade-offs along the following dimensions:

• Theoretical soundness: Joint embedding is the most advanced and theoretically ap-

pealing approach. Label-level combination performs no cross-modal learning, while

vector-level combination sits in between.

• Decision complexity: Label-level combination requires separate modeling choices for

each modality—embedding methods, clustering algorithms, and K values for both text

and images—while joint embedding uses a single pipeline; vector-level combination sits

in between.

• Model selection flexibility: Label- and vector-level combinations can choose from a

wide range of single-modality embedding models. Early-generation models (word2vec,

ResNet-Places365) are lightweight and easy to fine-tune and are still widely used in

recent social science research, while advanced models offer better performance but

cost more to run and are harder to customize (i.e., fine-tuning). Model choice should

depend on dataset characteristics: if the dataset matches a model’s training domain

(e.g., protest scenes with Places365), early-generation embedding models suffice, as we

found in our primary dataset; otherwise, advanced models trained on broader datasets

typically generalize better (Section 6.5). In contrast, joint embedding offers fewer

model options and limited fine-tuning flexibility.

In contrast, joint embedding has much fewer choices. Moreover, these models are

difficult to fine-tune. If flexibility is the priority, then one should choose label- or
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vector-level combinations.

• Dimension explosion: Label-level combination multiplies cluster counts—even modest

numbers of text and image clusters yield potentially excessive joint clusters. Re-

searchers must either merge or prune these clusters (risking data loss) or face a heavy

interpretive burden.

We provide key Python codes for the three methods in Section B for readers interested

in the technical details. Notably, extracting these embeddings requires fewer than a hundred

lines of code, significantly enhancing the practicality and accessibility for use in research

applications.

3.4 Evaluation Criteria

Choosing the right embedding model is just the first step—we also need robust methods to

evaluate clustering results (Grimmer and Stewart, 2013). Moreover, an evaluation toolkit is

useful because while embedding models evolve rapidly and researchers may choose different

models depending on their datasets and computational constraints, the evaluation frame-

work for multimodal clustering remains relatively stable. Text-image pairs present unique

evaluation challenges compared to single modalities. We discuss our evaluation toolkit.

3.4.1 Data‑driven performance measure of clustering results using S_DbW in-

dex

To evaluate internal clustering quality, we use the S_DbW index (Halkidi et al., 2002), which

sums two components—each of which we aim to minimize:5

• Within-cluster dispersion (lower is better): the average dispersion of data points

around their cluster centroids; minimizing this yields tighter, more cohesive clusters.

• Between-cluster density (lower is better): the density of points in the regions between

clusters; minimizing this reduces overlap and ensures clusters remain distinct.
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Consequently, lower S_DbW values indicate higher-quality groupings, achieving both

compactness and clear separation. For the formal definition, see Appendix A.2.

3.4.2 Selecting K using the marginal gain of S_DbW index

S_DbW also guides us through one of the trickiest parts of clustering: deciding how many

clusters to use. Too few clusters might hide meaningful differences; too many can create

artificial splits and make interpretation harder.

We begin with a small number of clusters and slowly increase it. At each step, we check

how much the S_DbW index improves, relative to the increase in the number of clusters.

If this relative gain is large, the extra cluster might be worth it. But if the gain becomes

small, we likely just add complexity without a real benefit.

We formalize this intuition as the marginal gain in S_DbW, calculated as the difference

between the absolute changes in index divided by changes in the cluster number from K ′ to

K. We use absolute changes to make it robust to small changes that would inadvertently

favor solutions with larger number of clusters.

MarginalGainS_DbW = |∆S_DbW

∆K
| = |S_DbW (K)− S_DbW (K ′)

K −K ′ |

We stop increasing K when this marginal gain drops below a threshold (0.01 in this paper),

meaning that further increasing the number of clusters no longer improves grouping quality.

3.4.3 Human-coded within-cluster consistency

Optimal clustering solutions in the eyes of machines—smaller S_DbW in our context—may

not correspond to the optimal solutions identified by humans (Chang et al., 2009). We follow

Zhang and Peng (2024) to calculate the within-cluster consistency of each image clustering

method and each choice of K. We measured within-cluster consistency by randomly sampling

10 posts from each cluster and having human coders assign themes based on text-only, image-
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only, and joint content. The consistency score represents the proportion of posts in a cluster

that match its most frequently assigned theme, with higher scores indicating better thematic

coherence. Appendix E provides details of the human coding procedures. Note that this

index does not capture the between-cluster density part of S_DbW index so it should be

use with other evaluation metrics.

3.4.4 Addressing dimension explosion issues and data loss

A unique problem of label-level combination is dimension explosion. Clustering text and

images separately and then combining the labels creates many small clusters—often too

small to interpret or use, when cross-modal alignment is low (i.e., low AMI). Researchers

could choose a lower number to avoid dimension explosion, but this would risk using too few

clusters for each modality.

Joint clustering methods (Methods 2 and 3) avoid this problem by analyzing both modal-

ities simultaneously. Instead of producing many tiny combinations, the algorithm recognizes

that several small clusters are actually variations of the same broader theme and groups

them together. This produces larger, more interpretable clusters with far less data loss.

If there are indeed dimension explosion issues from label-level combinations, there are

two solutions:

Iterative merging One common strategy is to estimate more topics than you expect to

need and then manually merge any that look redundant. In practice, rather than computing

formal similarity scores, researchers typically inspect an interactive display (e.g. LDAvis;

(Sievert and Shirley, 2014)) to spot near-duplicate topics and collapse them into a single

theme. Some toolkits—most notably BERTopic—offer built-in commands to streamline this

step, but each merge ultimately relies on the analyst’s judgment of thematic overlap. Manual

label merging is also a valid option when guided by theory and supported by clear coding

schemes; our proposed within-cluster consistency measures can help validate and audit such
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merging decisions.

Pruning and data loss The second solution is to “prune” the results by keeping only

the largest clusters and discarding the rest. This is also a popular choice and has been

implemented in popular topic modeling packages such as BERTtopic (Grootendorst, 2020).

This approach is easier to implement compared with iterative merging, but the downside of

this approach is that it discards data. We formally measure the data loss as the percentage

of documents dropped if we only keep the top k largest clusters out of a total K clusters.

4 Joint Text-Image Clustering on CASM: process and

results

4.1 Dataset

Our main dataset comes from CASM-China, where Zhang and Pan (2019) used supervised

methods to identify whether social media posts (with both texts and images) discuss offline

protests.CASM-China contains over 136,330 offline protests in China from 2010 to mid-

2017, with 273,950 associated Weibo (Chinese Twitter) posts—around 2.01 posts per event

on average. Posts can contain up to 9 images, though many contain no images, resulting in

336,921 total images.6 Zhang and Peng (2024) used a sample of CASM-China (around 5%) to

compare image-only clustering approaches. This article extends that work by systematically

comparing clustering results using text alone, images alone, and multimodal combinations.

We keep only Weibo posts that have both images and text, and further create image-text

pairs from the posts. If a Weibo post contained one paragraph of text but multiple images,

we create multiple text-image pairs by associating the same text with each piece of images.

In total, we have 336,921 image-text pairs extracted from the Weibo posts. Then we applied

our three methods below. The computer details are provided in Appendix Section B.4.

15



4.2 Label-level combination

Text clustering For text representation in the CASM dataset, we used BERT to extract

512-dimensional document embeddings.7 Then we removed the stopwords with our own

stopword list depending on Jieba and HIT Chinese stopwords list. We manually added some

Chinese tokens that are clearly irrelevant to our context. 8 Given that CASM texts are

typically concise and informal, we found that standard BERT-based embeddings already

performed well. While recent LLMs could potentially improve representation quality, the

current embeddings already yielded coherent and interpretable clusters across validation

metrics. We then used K-means for grouping these embeddings into clusters.

The text clustering results for K = 10 clusters are presented in Table 1. We first examine

each modality separately with K = 10 to capture sufficient topical variation. However, using

the same K for images would result in 100 total clusters for label-level combination, which

becomes too much as we will see in next subsection.

Over the ten topics shown in the table, we can observe that three out of the ten clusters

(Clusters 2, 3, and 10) are about labor disputes. The observation that labor disputes is

the most prevalent protest type is similar to those in the original CASM-China dataset, but

we obtained these from clustering whereas the original authors used supervised approaches

based on dictionary methods (Zhang and Pan, 2019). Cluster 1 is about protesters using

blocking roads as a tactic, which caused traffic jams, and many of the posts were from a

third-person point of view. Cluster 4 is a mixed cluster with two topics of textual infor-

mation: either doctor-patient disputes resulting in family members of patients protesting

in hospitals, or posts describing protesters who suffered from violence and received medical

treatment. Cluster 5 is about posts describing general protests without enough contextual

details. Cluster 6 is about legal enforcement. Interestingly, both Cluster 7 and Cluster 8

are about consumer rights protests, with Cluster 8 more concentrated on posts where home-

owners express grievances towards real estate developers or management. Finally, Cluster 9

is about protests against forced evictions and land acquisitions.
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Table 1: Words with Highest c-TF-IDF Score in K-Means Text Clustering at K = 10.
The c-TF-IDF measurement to pick out the most important word tokens in each clusters
(Grootendorst, 2020)

Cluster # of Posts Terms with Top 10 Highest TF-IDF Score

1: Road Blocking
Protest

11095 Road Blocking 堵路/拦路 Gate 门口 Mobbing 闹事 Somebody 有人
Banner 横幅堵车 Protest 游行 Detour 绕行 City Government 市政
府

2: Labor Dispute 6187 Wage血汗钱We我们 People老百姓Worker农民工/民工/工人 Gov-
ernment 政府 Demand 讨要 Company 公司 New Year 过年 Return
Home 回家

3: Labor Dispute 19767 Worker 农民工 Wage 工资 Demanding Payment 讨薪 Delayed Pay-
ment 拖欠 They 他们 New Year 过年 Return Home 回家 We 我们
Government 政府 Boss 老板

4: Doctor-Patient
Disputes / Violence

13550 Hospital 医院 Taxi 出租车 Chengguan 城管 Driver 司机 Family
Member 家属 Law Enforcement 执法 Violence 暴力 Police 警察 Car-
Owner 车主 In site 现场

5: Protest (Gen-
eral)

5224 Protest抗议 Link链接Webpage网页 Collective集体 Demonstration
示威 Student学生 China Construction Bank建行 Japan日本 School
学校 People 民众

6: Law Enforce-
ment

7932 SWAT特警 Police警察 Police Car警车 Escalate出动 Public Security
公安 Gate 门口 Force 力量 Uncle 叔叔 Today 今天 Webpage 网页

7: Consumer
Rights

6808 Defend Rights 维权 Home-owner 业主 We 我们 Ourselves 自己 Car-
owner 车主 Defend 维护 Rights 权益 Consumer 消费者 Support 支
持 Link 链接

8: Home-Owners 12592 Home-owner业主 Developer开发商 Community小区 Defend Rights
维权 Home Management物业交房 House房子 Vanke Real Estate万
科 Price Drop 降价 Issue 问题

9: Forced Eviction 11720 Villager 村民 Government 政府 Forced Eviction 强拆 Eviction 拆迁
Land 土地 Farmer 农民 People 老百姓/百姓我们 Land Acquisition
征地

10: Labor Dispute 17820 Employee 员工 Worker 工人/民工 Demand Payment 讨薪 Boss 老板
Owe拖欠Wage工资 Company公司 They他们 Jump of Building跳
楼

17



Image Clustering For image representation in the CASM dataset, we followed Zhang

and Peng (2024) by first transforming images into embeddings using a pre-trained ResNet-18

model trained on the Places365 dataset. ResNet-18 is a widely used convolutional architec-

ture in deep learning (He et al., 2016), and Places365 contains 1.8 million labeled images

across 365 scene categories, covering a broad range of indoor and outdoor environments

such as streets, squares, conference rooms, kitchens, and legislative chambers (Zhou et al.,

2014). This combination is particularly well-suited to our setting: the CASM dataset con-

sists of user-generated protest-related social media posts, where images predominantly depict

environmental or situational scenes (e.g., streets, crowds, surveillance infrastructure). Com-

pared to models trained on object-centric datasets like ImageNet, Places365-trained models

better capture the spatial and contextual structure of such protest scenes, providing more

relevant image embeddings for downstream analysis. The resulting image embeddings are

512-dimensional vectors. Finally, we perform K-Means clustering on the 512-dimensional

vectors to identify visual topic groupings.

Figure 2 shows the clustering results from the K-means algorithm. We apply K-Means

(K = 10).9 Each row represents a cluster, and we randomly sampled 10 images belonging

to the cluster. From the results, we can observe interpretable themes of images in different

K-means image clusters: crowd gatherings at Cluster 1, injuries and conflicts at Cluster 2,

buildings at Cluster 3, construction plants at Cluster 4, screenshots or contracts at Cluster

6, outdoor protests and police escalations in Cluster 8, indoor collective actions at Cluster

9, and protests with banners at Cluster 10. Except for Cluster 6, all other image clusters

consist of photos showing the venues (construction plants, factories, gates of governmental

buildings), the involved social actors (workers, homeowners, police, officials, organizations),

the intensity of protests (violent clashes, injuries), and the tactics (road blocking, door

blocking, holding banners, threatening to commit suicide by jumping off the building) of the

protest.
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Figure 2: Image-clustering alone; K = 10. Each row shows 10 randomly selected images
from a single cluster.
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Label-level combination With separate clustering results for each modality, we create

the final category by concatenating text and image group labels. For instance, if a social me-

dia post is assigned into the text category describing ”environment” and the image category

describing ”banner”, then the joint category will be “environment & banner”.

Figure 3 shows a heatmap of these combinations, with each cell representing the percent-

age of posts in that joint cluster. To highlight potential text-image alignments, we reordered

the heatmap’s columns so that high values along the main diagonal (compared to other cells

in the same row or column) would indicate strong one-to-one correspondence between text

and image categories. 10

Figure 3: Heatmap for the proportion of classes in label-level combination (label-level combi-
nation). The X-axis are image categories and Y-axis are text categories. Each cell indicates
the ratio between the number of text-image pairs in this particular category and the total
number of text-image pairs. We permute columns (via the Hungarian algorithm) to align
matching text–image clusters along the diagonal for easier visual inspection.
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4.2.1 Low modality correlation motivates the necessity of joint embedding

The diagonal structure in Figure 3 reveals the degree of alignment between text and image

clusters. When text and image modalities are strongly correlated, we expect to see a clear

diagonal pattern with high values. Conversely, a more dispersed pattern indicates weaker

correlation, suggesting that text and image content convey different information.

Upon visual inspection, we observe that the diagonal values are not particularly high

compared to off-diagonal cells, suggesting texts and images are not strongly correlated in

our dataset. To formally test this intuition, we computed the AMI between text and image

labels. The resulting AMI is 0.029, very close to zero, which confirms near-independence

between modalities. This lack of cross-modal alignment creates challenges for label-level

combination, as we end up with many smaller clusters.

4.2.2 Selecting the Right K Using Marginal Gains of S_DbW

To identify a common and reasonable value of K for this dataset, we applied the marginal

gain rule to clustering solutions with K = 9 (32), 16 (42), · · · 100 (102). Figure 4 shows how

marginal gains in the S_DbW index change as K increases.

We observe that marginal gains drop substantially at K = 25 for all three methods. In-

creasing K beyond this point yields minimal improvements in S_DbW , while adding inter-

pretive burden. This suggests that our earlier use of K = 100 in the label-level combination

may have been excessive. Consequently, we reduce the number of clusters to K = 25 and ap-

ply this value uniformly across the all methods, including the other vector-level combination

and joint embedding methods. For consistency, we also rerun the label-level combination

using K = 25 (i.e., 5 clusters per modality). This alignment allows for a fair comparison,

ensuring that observed differences stem from the embedding strategies rather than from

variations in cluster count.

We acknowledge that K = 25 may not be the optimal value for every method. Each

method may perform better with a different K not included in our grid search. Moreover,
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the marginal gain in the S_DbW index is just one of many possible criteria for selecting K.

In applied research, analysts may explore a wider range of values and make final choices for

each particular clustering method separately. For this methodological study, we fix K = 25 in

our main results because it offers a reasonable balance across all three methods (as supported

by S_DbW scores) and enables fair methodological comparison.

Figure 4: Marginal absolute S_DbW gain (Y-axis) as a function of the number of clusters
(K) for CASM. At K = 25, all three methods reach a marginal gain below 0.01, indicating
diminishing returns.

4.3 Vector-level combination

We used the same embedding models for text (BERT) and images (ResNet-Places365) to

obtain embeddings for each modality. We then concatenated the two to form a 1,024-

dimensional document vector. We further used Uniform Manifold Approximation and Projec-

tion (UMAP) to project the 1024-dimensional vectors into a 50-dimensional space (McInnes
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et al., 2020). This reduction step is mainly to reduce computational cost. For instance,

K-means’s runtime scales quadratically with the embedding dimension; clustering directly

on the full 1024-dimensional vectors would take over 400 times longer than on the reduced

50-dimensional vector. The final 50-dimensional vectors are clustered using K-means.

The clustering result is presented in Figure 5. We show five pairs for each of the first

5 largest clusters, ranked by the size of clusters. For the cluster visualizations in Figure 5

and following, we randomly sample five image-text pairs within the 10% observations that

are closest to the cluster centroids. With this strategy, we can have a direct view for the

data-points that are most representative of the clusters. The remaining 20 clusters can be

viewed online due to space limitations.11

Figure 5 shows that vector-level combination is able to find common, large clusters. For

example: the largest cluster—road-block protests—comprises 6.38% of the dataset. These

demonstrations—where workers block major roads to demand owed wages—are among the

most common forms of collective action in China (Zhang and Pan, 2019; Cai, 2010). By

contrast, label-level combination fragments this cluster across six separate clusters, based on

the combinations of text and image cluster labels:

• Discussions around labor disputes on owed wages belong to text cluster 2, 3 and 10

(see Table 1; and rows of Figure 3).

• Protesters holding banners are captured in Cluster 3 and 8 according to the image

clustering (Figure 2).

The superior performance of vector-level combination stems from its ability to use fewer

clusters (K = 25) while still identifying large, meaningful clusters. With label-level combi-

nation, we face a dilemma: using too few clusters would miss small clusters such as Cluster

6, Consumer Rights in text clustering. Conversely, using even a moderate number of clus-

ters (10 each) correctly identifies small clusters but creates redundancy with multiple similar
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concept clusters appearing separately. Vector-level combination effectively resolves this chal-

lenge in low text-image alignment scenarios.

4.4 Joint embedding

We used OpenAI’s CLIP-ViT-B32 multimodal model to turn image-text pairs into a 1024-

dimensional vector, and again reducing that to 50 dimensions. 12 We then use K-means with

K = 25. Similarly, we show the top 5 clusters (each cluster shows 5 documents) in Figure

6. The rest 20 topics are shown in the Appendix.13

We can see that the top clusters are quite similar to that from vector-level combination:

labor disputes with people blocking roads, protests at government offices. Vector-level com-

bination identified protest with building facades (cluster 17), and bystanders complaining

that they saw a protest blocking roads (cluster 22). On the other hand, joint embedding has

protests portraying indoor images of dormitories or rental rooms accompanying grievances

about housing or unpaid salary (cluster 18). It also portrays scenes in which uniformed

officers confront or monitor the demonstrators (cluster 3). Both methods produce similar

cluster types, but their relative sizes differ, so each method’s top 5 contains different specific

clusters.

Theoretically, the third method should be superior to the second in extracting more

meaningful embeddings. We find that both methods yield reasonable results and it is harder

to tell specifically which one is performing better. Hence we conduct evaluations using the

tools we introduce in Section 3.4.
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Figure 5: The top 5 largest clusters in vector-level combination (BERT with ResNet-
Places365) under K-Means (K = 25). Each row contains 5 samples from the 10% samples
that are closest to the cluster centers for each cluster. The total number of clusters are 25.
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Figure 6: The Top 5 biggest clusters in joint embedding (Multimodal Model) under K-Means.
Each row contains 5 samples from the 10% samples that are closest to the cluster centers
for each cluster. The total number of clusters are 25.
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5 Evaluations

5.1 Data‑driven performance measure of clustering results using

S_DbW index

We first calculated the S_DbW index, where a lower score indicates better clustering per-

formance. For every embedding combination method, we also used HDBSCAN instead of

K-means to group the same embeddings.14 To ensure a fair comparison, we set K to 25 (5

for each modality in label-level combination).

Table 2 shows that both vector-level combination and joint embedding consistently

achieve lower S_DbW scores than label-level combination. This pattern is true regard-

less of using K-means or HDBSCAN for grouping. This pattern holds across a wide range

of K values (Figure 7) for K-means, providing quantitative evidence that label-level combi-

nation produces lower-quality clusters. From the results in Figure 7, among the two joint-

clustering methods, joint embedding slightly outperforms vector-level combination under

K-Means when K ≤ 25, but performs slightly worse when K > 25.

Cluster Algorithm Method 1:
label-level
combination

Method 2:
vector-level
combination

Method 3:
joint embed-
ding

K-Means 1.07466 0.76451 0.63964
HDBSCAN 0.38097 0.16604 0.16708

Table 2: S_DbW Score for Different Feature Extraction Scheme and Algorithm, setting K
as 25 for all cells in this table. Note that this choice is to ensure comparisons across all
conditions; it may not be the optimal choice for real tasks.

5.2 Data Loss

Our earlier diagnostic shows that the CASM dataset exhibits low cross-modality correlation,

which increases the risk of dimensional explosion. To understand how each workflow handles

high cluster granularity, here we evaluate the case under dimensional explosion when the
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Figure 7: S_DbW as a function of number of clusters on the CASM dataset using K-means
as the grouping algorithm.

K for K-Means at both modalities are 10, resulting in 100 different combinations of labels

to prune, and comparing this workflow with vector combination and joint embedding when

K-Means setting K = 100. We also provide the data loss rate in pruning by selecting top-N

clusters under the clustering algorithm of HDBSCAN. Consistent with this, Figure 8 shows

that label-level combination results in substantially higher data loss due to the proliferation

of small, unaligned clusters (see Appendix C.3 for more details). In contrast, vector-level

combination and joint embedding produce far fewer small clusters, leading to significantly

lower data loss.

5.3 Comparing Clustering Algorithms

While clustering algorithm selection is not the primary focus of this study, it still influences

the results. The S_DbW scores presented in Table 2 show that HDBSCAN outperforms K-

Means by producing more compact and well-separated clusters. This advantage is expected,

as K-Means assigns all observations—including noisy or hard-to-cluster points—to a cluster,
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(a) K-Means (b) HDBSCAN

Figure 8: Data loss (Y-axis) as a function of the number of top clusters retained (ranked by
size) for each method.

whereas HDBSCAN is able to identify and discard such points as noise.

However, this strength comes at a cost: HDBSCAN results in substantially higher data

loss (Figure 8). For label-level combination in particular, the magnitude is notable—if we

were to rerun the results in Section 4.2 using HDBSCAN, the data loss would be nearly

double that of K-Means.

Lastly, for each set of results presented in the main text, we also provide corresponding

versions using HDBSCAN in the Appendix. For label-level combination, the results of text

clustering are discussed in Appendix C.1, and image clustering results are in Appendix C.2.

Results for vector-level combination are shown in Figure D.1, and results for joint embedding

are presented in Figure D.2. We find that, overall, HDBSCAN identifies similar topic contents

to those found by K-Means when other parameters are held constant. Human inspection did

not reveal substantial differences between the two.

Since there is no clear winner, we use K-Means in our main analysis to reduce data loss

and maintain consistent interpretability across all methods. We acknowledge, however, that

our comparison is limited. Future work could extend this analysis by evaluating a broader

range of clustering algorithms.
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5.4 Human Validation

Last, we relied on human coders to calculate within-cluster consistency for three methods,

with K ranging from 20, 25, and 30. Coding procedure is briefly described in Section

3.4.3 and in greater detail in Section E. The higher the within-cluster consistency, the more

thematically similar the images within a category are, indicating a stronger clustering result.

Figure 9 shows the average within-cluster consistency. The full result, which includes

each cluster’s within-cluster consistency, is shown in Figure E.1. Joint embedding yields the

best-performing model (K = 20), but also the worst-performing model (K = 25) in terms

of maximizing within-cluster consistency.

Figure 9: Average human-coded within-cluster consistency by methods and the number of
clusters K

Overall, we find no clear winner between vector-level combination and joint embedding.

While joint embedding is more theoretically appealing and performs better when K ≤ 25,

vector-level combination achieves better S_DbW scores when K > 25 and produces slightly

more interpretable clusters. Human validation results for joint embedding are mixed across
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different configurations. Importantly, both methods consistently outperform the first label-

level combination across all metrics: internal clustering quality, ease of interpretation, data

retention, and theoretical soundness.

6 Joint Text-Image Clustering Robustness Across Do-

mains

To evaluate how our multimodal clustering methods perform in different content domains,

we replicate our analysis on a second dataset: BU-NEmo, a multimodal dataset of U.S.

gun violence news comprising 1,297 headline–image pairs from 840 articles across 21 media

outlets (Reardon et al., 2022). Compared with CASM-China, this dataset differs across sev-

eral dimensions: it is smaller, English-language, U.S.-based, and produced in a professional

journalistic setting. These differences allow us to test the robustness of the joint text-image

clustering pipeline and to assess how well the proposed clustering strategies generalize across

sociopolitical and media contexts.

Importantly, we expect cross-modal alignment to be stronger in BU-NEmo, since jour-

nalists deliberately select images to illustrate headlines. In such settings, the benefit of joint

clustering may be reduced. This section therefore also serves as a test of the scope conditions

under which joint clustering adds value.

6.1 Embedding models

For label-level and vector-level combinations, we embed text with OpenAI’s text-embedding-3

model and images with Google Vertex-AI’s multimodal embedding service.15 Joint embed-

ding applies this same Google multimodal model directly to the image-text pairs.

We moved away from the ResNet (Places365) and CLIP embeddings used in our CASM

analysis for two main reasons. First, the embedding models we adopt here are trained on

image–text corpora that are several orders of magnitude larger than those used for earlier

31



models. These larger training sets often yield more robust and general-purpose embeddings,

which is advantageous in the context of BU-NEmo’s diverse and professionally curated con-

tent. In contrast, our main CASM dataset consists of informal, user-generated content cen-

tered on protest scenes, where domain-aligned models like Places365 (scene classification)

does not prevent us from finding meaningful categories. CASM is also over 300 times larger

than BU-NEmo, making earlier-generation embedding models substantially more computa-

tionally and economically efficient for large-scale processing. We did compare these newer

embeddings with older embedding’s results in Section 6.5.

6.2 Clustering

We used the marginal gain methods to select K. It appears here that K = 25 is also a good

choice (See Figure F.2 in the appendix). We used k-means to perform clustering.16

6.3 Results

Label-level combination Text-only clustering groups news headlines into five themes:

(1) political debate over gun-control laws, (2) coverage of specific mass-shooting incidents,

(3) school-safety concerns, (4) NRA and gun-sale regulation stories, and (5) disputes over

3-D-printed guns (Table F.1). Image-only clustering groups the photos into five themes: (1)

advocacy and protest imagery, (2) community vigils and memorials, (3) policy-debate scenes

(speeches, rallies, 3-D-printed guns), (4) justice-process visuals (courtrooms, mugshots, mourn-

ing), and (5) law-enforcement and security response (Figure F.3).

Cross-modal alignment As we expected, the adjusted mutual information (AMI) be-

tween text-only and image-only clusters is 0.166 when K = 5 for each modality,17 compared

with 0.029 on CASM, indicating moderate correspondence. Therefore, we predict that the

added value of joint clustering will be rather limited for this dataset.
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Joint clustering results Indeed, vector-level combination and joint embedding largely

recover the core themes identified by label-level combination, such as political debate, mass

shootings, and memorials. The detailed results are shown in Figure F.6 and F.7. This is

expected from near-zero AMI scores. However, they also capture additional distinctions

not observed in label-level results. For example, they more clearly separate visual coverage

of victims from that of suspects in hate-crime reporting. Joint embedding further isolates

smaller, specific narratives—such as celebrity-led school-shooting vigils at music award cer-

emonies and political events like the Kavanaugh nomination—that were previously merged

into broader clusters.

6.4 Data‑driven performance measure of clustering results using

S_DbW index

Joint embedding achieves the lowest (best) S_DbW score (0.841), followed by label-level

combination (0.856) and vector-level combination (0.879).18 The differences among methods

are modest, with S_DbW scores differing by no more than 4%—unlike the CASM dataset,

where S_DbW scores were halved when shifting from label-level combination to the other

two methods.

For data loss, label-level combination performs best: only about 8% of documents are

pruned when reduced to the top 25 clusters, whereas vector-level combination and joint

embedding discard slightly more observations (Figure F.8). Overall, these findings suggest

that when AMI is high—indicating strong cross-modal alignment—all three approaches offer

similar clustering performance.

6.5 Testing alternative embedding configurations

To assess whether the newer embedding models actually improve clustering performance, we

also tested the configurations previously used in our CASM study:
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• New: Google Vertex-AI for images; OpenAI for texts.

• Same as the first dataset: ResNet-Places365 for images paired with BERT for text

• Same image embedding; text upgraded: ResNet-Places365 for images paired with Ope-

nAI’s text embedding for text.19

Table 3 shows that switching to older ResNet (Places365) and BERT embeddings de-

graded clustering performance. For every method, using newer embedding models improves

clustering performance, highlighting the advantage of general-purpose embedding models

trained on diverse datasets over task-specific models.

Importantly, the performance gains from newer embeddings are comparable to or smaller

than the gains from different combination approaches. In fact, using older embeddings with

the theoretically most advanced approach (joint embedding, Method 3) yields results nearly

identical to using newer embeddings with label-level combination method.

Table 3: Embedding performance comparison using S_DbW score (K=25). Method 3 has
no entry in the third row because it uses joint embeddings and cannot vary text and image
embedding models separately.

Embedding Combi-
nation Method

Method 1:
label-level
combination

Method 2:
vector-level
combination

Method 3:
joint Embed-
ding

New 0.856 0.879 0.841
Same as first dataset 0.901 0.899 0.844
Same image embed-
ding; text embedding
upgraded

0.890 0.895 NA

Summary We replicated our joint text–image clustering approach on the BU-NEmo gun

violence dataset to test its generalizability and refine the scope conditions under which joint

clustering adds value. In this dataset—where text and image content are more strongly

aligned—the added benefits of joint clustering were less pronounced. Joint methods still

produced coherent groupings, but their differences with label-level combination were small.
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Ultimately, the choice of method should reflect the degree of cross-modal correlation and the

analytical goals of the researcher.

7 Conclusions

This study proposes and compares three methods for unsupervised clustering of multimodal

data containing both text and images—such as social media posts or news articles. We

recommend using pre-trained models to transform each modality into dense vector repre-

sentations (embeddings), followed by standard clustering algorithms such as K-Means or

HDBSCAN. Through a combination of internal clustering metrics, diagnostic tools, and hu-

man validation, we show that clustering based on joint text–image embeddings consistently

outperforms the simple alternative of clustering each modality separately and combining

their labels (label-level combination), when texts and images convey different information

that cannot be predicted from each other.

We compare two main approaches for constructing joint representations: vector-level

combination, which concatenates embeddings from separate text and image embedding mod-

els; and joint embedding, which uses multimodal models trained to project both modalities

into a shared semantic space. While joint embedding is often considered superior from a

machine learning perspective, we find that its empirical advantage is modest and context-

dependent.

Our contribution extends beyond strategies to turn texts and images into numeric rep-

resentations. We introduce a set of practical evaluation tools for researchers working with

multimodal clustering: (1) a diagnostic based on Adjusted Mutual Information (AMI) to

assess text–image alignment, (2) the use of marginal gains of S_DbW index to determine

the optimal number of clusters, and (3) a human-coded within-cluster consistency check to

validate interpretability. These tools help clarify when joint clustering is most useful and

how to evaluate it rigorously.

35



By applying our clustering pipeline and evaluation toolkit, we reveal sensitivity at all

three steps of the pipeline. Combination strategy matters most: switching from label-level

combination to either joint method reduced S_Dbw errors by nearly half on the Chinese

protest dataset (CASM). Embedding model choice also affects results, but changes in em-

bedding models generally had a smaller impact on clustering quality than the choice of

combination strategy. Clustering algorithm and K value matter as well, though once K

is selected via the marginal-gain rule, K-Means and HDBSCAN produced broadly similar

thematic structures.

To assess clustering robustness, we recommend checks at three steps. For embeddings,

rerun the pipeline with alternative text, image, or joint embedding models; stable cluster

structure suggests robust results. For embedding combination, report AMI scores and com-

pare at least two combination strategies. For clustering, visualize diagnostic metrics, ensure

clusters persist across reasonable K values, and test additional clustering algorithms. While

not every check is necessary, even a subset provides valuable validation.

This study contributes to the computational social science literature by bridging the

gap between the text-as-data and image-as-data communities. Although both approaches

have gained traction independently, they are rarely integrated despite many datasets being

inherently multimodal. Our work demonstrates how the two can be combined and eval-

uated systematically, offering a roadmap for future research. As digital content becomes

increasingly multimodal, the need for multimodal analytical frameworks will only grow.

Finally, while our study focuses on clustering with text and image data, our framework

is extensible. Future work might incorporate other modalities—such as audio, video, or

geospatial context—and evaluate clustering strategies that can scale across these richer forms

of data. We also acknowledge that the space of multimodal AI models is evolving rapidly.

Rather than exhaustively benchmarking every model, our goal is to equip researchers with a

practical toolkit to make informed, context-sensitive choices about representation, clustering,

and evaluation. We hope this work encourages scholars to treat multimodal content in its
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natural form rather than reducing it prematurely to one modality or analytical lens.
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ENDNOTES
1A Twitter post or newspaper article typically uses only 1% of English vocabulary; the remaining 99%

results in zeros in the document-term matrix.
2Topic-model-based representations like LDA are not appropriate here, because they produce very high-

dimensional sparse vectors (often over 10,000 dimensions), incompatible with the much lower dimensionality

of typical image embeddings.
3https://github.com/mlfoundations/open_clip
4OpenAI has not updated their multi-modal embedding models since CLIP.
5Popular choices such as the Elbow method only captures within-cluster dispersion.
6Some posts lack images and contain only text. Some images are corrupted or truncated to 0 bytes. We

only use data that can be processed by the transfer learning models.
7For preprocessing, we used Jieba package in tokenization of the posts into word tokens, https://gith

ub.com/fxsjy/jieba
8The detailed stop words list is available at our online repository: https://osf.io/gwbv6/
9The result using the same set of image vectors but using HDBSCAN as the clustering algorithm is shown

in Appendix C.2
10Specifically, we take the matrix of category-pair proportions, negate it, and feed it to the Hungarian

algorithm to find the permutation that minimizes the total off-diagonal cost—equivalently, maximizes the

37

https://github.com/mlfoundations/open_clip
https://github.com/fxsjy/jieba
https://github.com/fxsjy/jieba
https://osf.io/gwbv6/


diagonal trace on the original matrix.
11https://osf.io/gwbv6/
12The model description is at: https://huggingface.co/sentence-transformers/clip-ViT-B-32-m

ultilingual-v1.
13https://osf.io/gwbv6/
14For the HDBSCAN parameters, we set the minimum cluster size to 1000 and α to 0.6. A lower α value

reflects a higher tolerance for including less-dense points in clusters. Because HDBSCAN’s hierarchical struc-

ture allows some data points to remain unclustered (i.e., treated as outliers), we excluded these unclustered

points when calculating the S_DbW index.
15https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-multimodal-embed

dings. OpenAI does not currently offer a dedicated image-embedding model.
16In our testing of this dataset, we found that using K = 10 in each modality (K = 100) could find

more meaningful clusters and achieve lower S_DbW scores. We provide the detailed results for K = 100 in

Appendix F.4. For comparison purposes, we still use K = 25 in the main text.
17AMI is 0.232 when K = 10 for each modality.
18When using K = 10× 10, the S_DbW scores improve across all methods: 0.722 for label-level combina-

tion, 0.759 for vector-level combination, and 0.701 for joint embedding. Although higher K improves cluster

compactness, it also substantially increases interpretation burden.
19text-embedding-3.
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Appendix A Evaluation Details

A.1 Measuring Clustering Alignment with Adjusted Mutual In-

formation

Mutual information (MI) is a widely used information criterion that quantifies how much

knowing one clustering reduces uncertainty about the other. However, computing the raw

mutual information between text and image clustering can be misleading, since even two

random partitions will share some information purely by chance. This caveat becomes more

salient when the number of clusters increases.

To address this issue, we use the adjusted mutual information proposed by Vinh et al.

(2009).20

A.1.1 Formal Definition

Let T (x) and I(x) denote the text-only and image-only cluster assignments of a document

x. To quantify the alignment between these clustering solutions, we compute the Adjusted

Mutual Information (AMI):

AMI(T, I) = MI(T, I)− E[MI(T, I)]
max{H(T ), H(I)} − E[MI(T, I)] (1)

where the mutual information between T and I is defined as:

MI(T, I) =
∑
t∈T

∑
i∈I

p(t, i) log p(t, i)

p(t) · p(i)
(2)

and the entropy is defined as:

H(T ) = −
∑
t∈T

p(t) log p(t) (3)
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A.1.2 Implementation Details

Let nij be the number of samples in both text cluster Ti and image cluster Ij. We define:

ai =
∑
j

nij (size of text cluster Ti) (4)

bj =
∑
i

nij (size of image cluster Ij) (5)

N =
∑
i,j

nij (total number of samples) (6)

The term E[MI(T, I)] represents the baseline MI one would expect if the two clusterings

were independent but shared the same cluster-size distributions:

E[MI(T, I)] =
|T |∑
i=1

|I|∑
j=1

∑
nij

P (nij) ·
nij

N
· log

(
N · nij

ai · bj

)
(7)

where P (nij) is the hypergeometric probability of observing nij co-occurrences given fixed

marginals ai and bj.

By subtracting this chance-level MI and then normalizing by the maximum possible MI

(also above chance), AMI rescales our measure so that:

• AMI = 0 when the two clusterings agree no more than random chance.

• AMI = 1 when they agree perfectly.

This adjustment ensures that our clustering alignment metric is robust to the number of

clusters and provides a meaningful measure of agreement beyond what would be expected

by chance.

A.2 Definition of S_DbW index

Let D = {vi|1, ..., n} be a partition of the data S into n distinct clusters by a clustering

algorithm, and vi is the corresponding centroid of each cluster.
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Definition 1. Inter − cluster Density (ID): This index measures the average density

among the clusters in the region in relation with the densities of the clusters. It is defined

as below. The point vi, vj are the centroids of clusters ci, cj, and uij are the middle point of

the line segment defined by vi, vj.

Dens_bw =
1

n · (n− 1)

n∑
i=1

( n∑
j=1,i

density(uij)

max(density(vi), density(vj))

)
The density function of the neighborhood u is defined as below. The term stdev denotes

the average standard deviance of all the clusters and is defined as stdev = 1
n

√∑n
i=1 ∥σ(vi))∥.

nij represents the number of tuples that are contained in the union set of cluster ci and cj.

Density(u) =

nij∑
l=1

f(xl, u);

The neighborhood of a data point x is defined to be a hyper-sphere with center u and

radius the average standard deviation of the clusters, stdev. It is defined by the function

f(x, u). The point x belongs to the neighborhood u if its distance is smaller or equal o the

average standard deviation of the clusters.

f(x, u) =


0, distance(x, u) > stdev

1, otherwise

Definition 2. Intra-cluster Variance : This is defined by the average scattering, or the

average of variances, of the clusters. σ(S) denotes the overall variance of the dataset.

Scatter =
1
n

∑n
i=1 ∥σ(vi)∥
∥σ(S)∥

Finally, the S_DbW index is defined as the sum of the scatterness score and the inter-cluster

density. The lower S_DbW index indicates the better performance. A low S_DbW index

indicates the partition of the data have comparatively high compactness of data over each
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clusters, and the clusters are all well separated between different clusters.

S_DbW = Dens_bw + Scatter

Appendix B Extracting embeddings for CASM dataset

B.1 Code for Generating Text Embeddings

from sent ence_t rans f o rmer s import SentenceTransformer , u t i l

# Custom Model f o r Trans f e r Learn ing

model_name = ’ sentence −t r a n s f o r m e r s / d i s t i l u s e −base−m u l t i l i n g u a l −cased−v1 ’

# Text Model f o r CLIP Text Embeddings

# model_name = ’ sentence −t r a n s f o r me r s / c l i p −ViT−B−32−m u l t i l i n g u a l −v1 ’

text_model = SentenceTrans former ( model_name )

t e x t _ l i s t = [ . . . ] # Pseudocode f o r packing the input t e x t s i n t o a l i s t

text_embeddings = text_model . encode ( t e x t _ l i s t )

# Generated t ex t embeddings cou ld be f e ed to the next s t ep

B.2 Code for Generating ResNet-Places365 Image Embeddings

import os

import pandas as pd

import numpy as np
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import to r ch

from torch . autograd import Var i ab l e as V

import t o r c h v i s i o n . models as models

from t o r c h v i s i o n import t rans f o rms as t rn

from torch . nn import f u n c t i o n a l as F

import cv2

from PIL import Image

# Helper f u n c t i o n s

de f recursion_change_bn ( module ) :

i f i s i n s t a n c e ( module , to r ch . nn . BatchNorm2d ) :

module . t rack_running_stats = 1

e l s e :

f o r i , (name , module1 ) in enumerate ( module . _modules . i t ems ( ) ) :

module1 = recursion_change_bn ( module1 )

r e tu rn module

de f hook_feature ( module , input , output ) :

f e a tu r e s_b l ob s . append ( np . squeeze ( output . data . cpu ( ) . numpy ( ) ) )

de f returnTF ( ) :

# Res i z e the input to make su r e f e ed i n t o the model

t f = trn . Compose ( [

t rn . Res i z e ( ( 2 2 4 , 2 2 4 ) ) , t rn . ToTensor ( ) , t rn . Normal ize ( [ 0 . 4 8 5 , 0 . 4 56 , 0 . 4 0 6 ] , [ 0 . 2 2 9 , 0 . 2 24 , 0 . 2 2 5 ] )

] )

r e tu rn t f
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de f load_model ( ) :

# t h i s model has a l a s t conv f e a t u r e map as 14 x14

mode l_ f i l e = ’ . / p l a c e s 365 / wide re sne t18_p lace s365 . pth . tar ’

i f not os . a c c e s s ( mode l_f i l e , os .W_OK) :

os . system ( ’ wget http : // p l a c e s 2 . c s a i l . mit . edu/ models_places365 / ’

+ mode l_ f i l e )

os . system ( ’ wget ht tps : / / raw . g i thubus e r con t en t . com/ c s a i l v i s i o n / p l a c e s 365 /

master / w ide r e sne t . py ’ )

import w ide r e sne t

model = wide r e sne t . r e sn e t 18 ( num_classes =365)

checkpo in t = torch . load ( mode l_f i l e , map_location=lambda s to rage ,

l o c : s t o r a g e )

s t a t e _ d i c t = { s t r . r e p l a c e (k , ’ module . ’ , ’ ’ ) : v f o r k , v in

checkpo in t [ ’ s t a t e_d i c t ’ ] . i t ems ( )}

model . l oad_sta te_d ic t ( s t a t e _ d i c t )

# hacky way to dea l with the upgraded batchnorm2D and avgpool l a y e r s

f o r i , (name , module ) in enumerate ( model . _modules . i t ems ( ) ) :

module = recursion_change_bn ( model )

model . avgpool = torch . nn . AvgPool2d ( k e r n e l _ s i z e =14 , s t r i d e =1, padding=0)

model . e va l ( )

# This i s the l a s t convo lu t i on l a y e r o f the r e s n e t

features_names = [ ’ l aye r4 ’ , ’ avgpool ’ ]

f o r name in features_names :
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model . _modules . ge t (name ) . reg i s te r_forward_hook ( hook_feature )

r e tu rn model

# Loading the ResNet we ight s f o r P lace s365

model = load_model ( )

t f = returnTF ( )

params = l i s t ( model . parameters ( ) )

weight_softmax = params [ −2 ] . data . numpy ( )

weight_softmax [ weight_softmax <0] = 0

i f __name__ == ’__main__ ’ :

images_l ink = [ . . . ] # L i s t o f image d i r e c t o r i e s

image_embeddings = [ ] # Empty l i s t to s t o r e image embeddings

# Sta r t to gene ra t e embeddings

f o r i i n range ( images_l ink ) :

f e a tu r e s_b l ob s = [ ]

img = Image . open ( images_l ink [ i ] )

t ry :

input_img = V( t f ( img ) . unsqueeze ( 0 ) )

l o g i t = model . forward ( input_img )

h_x = F . softmax ( l o g i t , 1 ) . data . squeeze ( )

probs , _ = h_x . s o r t ( 0 , True )

image_embeddings . append ( f e a tu r e s_b l ob s [ 1 ] )

except :

image_embeddings . append ( None )
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B.3 Code for Generating CLIP Image Embeddings

import to r ch

import c l i p

import numpy as np

from PIL import Image , ImageFi l e

ImageFi l e .LOAD_TRUNCATED_IMAGES = True

dev i c e = ” cuda ” i f t o r ch . cuda . i s _ a v a i l a b l e ( ) e l s e ” cpu”

image_d i r_ l i s t = [ . . . ] # L i s t o f d i r e c t o r y o f Images

image_embeddings = [ ] # Empty l i s t to s t o r e the CLIP image embeddings

# S p e c i f y t r a i n i n g f o r CLIP model to use

image_model , p r e p r o c e s s = c l i p . load (”ViT−B/32” , d ev i c e=dev i c e )

# Image should be load in batch to prevent running out o f GPU Memory

f o r i i n range ( l en ( image_ l i s t ) ) :

# Read Image

image = Image . open ( image_d i r_ l i s t [ i ] )

image = p r e p r o c e s s ( image ) . unsqueeze ( 0 ) . to ( d ev i c e )

# Get CLIP image embedding and s t o r e i t to CPU

with to rch . no_grad ( ) :

image_features = model . encode_image ( image )

image_features = image_features . cpu ( )

image_embeddings . append ( image_features )
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# Empty cached image

de l image , image_features

to r ch . cuda . empty_cache ( )

image_embeddings = np . ar ray ( image_embeddings )

B.4 Training details for CASM dataset

In the training we used a computer with the following configuration:

• CPU: Intel(R) Xeon(R) Gold 5215 CPU, 2.50GHz with 40 cores

• Internal memory: 256GB

• GPU: 5 NVIDIA GeForce RTX 3090

This setup is much smaller in scale than a full university HPC cluster (which might

have hundreds or thousands of cores across many nodes and much newer GPU models), but

more powerful than what most individual researchers would have dedicated access to. Our

computer specifications are more than adequate for this task. If researchers have university

access, they could utilize their institutional HPC resources. If not, they could use commercial

cloud computing services such as AWS’s P3 or P4d instances, or Google Cloud’s A2 instances

with similar GPU capabilities.

Appendix C Robustness checks for label-level combi-

nation

C.1 Text Clustering with HDBSCAN

Table C.1 presents the clustering results using HDBSCAN. We did not use this method in

our main analysis because the HDBSCAN algorithm is less frequently used in social sciences
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and produces too many topics, as we will see later. From the main text, we also know that

HDBSCAN has a lower S_DbW index than the K-means algorithm, which is why some

data scientists prefer it over the simple K-means algorithm. Specifically, we used the flat

clustering feature of the Python HDBSCAN package (McInnes et al., 2017) to fix the number

K of outgoing clusters by extracting clusters from the condensed hierarchical tree. This step

ensures comparability of performance across different clustering algorithms. We do find

that HDBSCAN’s clustering solutions find easy-to-interpret clusters with issues of focus and

tactics that are not separated in the K-Means analysis: Cluster 6 of teacher strikes, Cluster

8 of taxi-driver strikes, Cluster 9 of environmental protests, Cluster 11 of peaceful sit-ins or

hunger strikes, and Cluster 12 of economic fraud. HDBSCAN is a better clustering solution

compared to K-Means if researchers want to have a more fine-grained understanding of the

topics within the data, but is a worse solution in terms of data loss.
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Table C.1: HDBSCAN Result with BERT Sentence Embedding, Selecting Top 14 Biggest
Topics

Topic Label Cluster
ID

Terms with Top 14 Highest TF-IDF Score

Migrant Worker 0 Migrant Worker 农民工/民工 Seeking Wage 讨薪 Wage 工资 Owing
拖欠 Blood Money 血汗钱 Worker 工人 Boss 老板 Company 公司
Unpaid Wages 欠薪

Real Estate 1 Property Owner 业主 Real Estate Developer 开发商 Defending
Rights 维权 Neighborhood 小区 Property Management 物业 Wanke
万科 Real Estate 楼盘 Delivery 交房 Shenzhen 深圳 House 房子

Forced Eviction 2 Villager 村民 Demolition 拆迁 Forced Eviction 强拆 Land 土地
Farmer 农民 Government 政府 Land Acquisition 征地 Forced 强行
Township Government 镇政府 Reparation 补偿

Traffic / Road
Blocking

3 Road Blocking堵路/拦路 Door门口Mobbing闹事 City Government
市政府 Banner横幅 Detour绕行 Traffic Jam堵车 Demonstration示
威 Traffic 交通

Police 4 SWAT 特警 Police 警察/公安/警察叔叔 Police Car 警车 Armed Po-
lice 武警 Deployment 出动 Door 门口 Force 力量 Mobbing 闹事

General Protests 5 Defending Rights 维权 People老百姓/百姓 Government 政府 Rights
权益/权利 Defend 维护 Society 社会 China 中国 Law 法律

Teacher Strike 6 Teacher教师/老师 School学校 Student学生 Parents家长 Protest抗
议 School Strike 罢课 Collective 集体 Banner 横幅 Defending Rights
维权

Doctor-Patient Dis-
putes

7 Hospital 医院 Doctor 医生 Family Member 家属 Patient 患者/病
人 Yinao 医闹 Medical Worker 医护人员 Death 死亡 Mobbing 闹事
Banner 横幅

Taxi Strike 8 Taxi 出租车 Driver 司机 Ride-Hailing 专车 Strike 罢工 Didi 滴滴
Blocking 围堵 Unlicensed Taxi 黑车 Taxi-hailing 打车 Shutdown 停
运 Taxi Driver 的哥

Environmental
Protest

9 Dalian 大连 Waste Incineration 垃圾焚烧 Pollution 污染 Protest 抗
议 Villager 村民 Chemical Factory 化工厂 PX(p-Xylene) Hangzhou
杭州 Fujia 福佳 Dahua Group 大化

Protest Tactics 11 Protest 抗议 Demonstration 示威 Voiceless 无声 Ineffective 无效
Door 门口 Opposition 反对 Collective 集体 Banner 横幅 Hunger
Strike 绝食 Body 身体

Economic Frauds 12 Blood Money 血汗钱 People 老百姓 Fraud 诈骗 Company 公司 In-
vestment投资 Secured担保 Government政府 Fundraising集资 Liar
骗子 Investor 投资人

Car Owners 13 Car Owner 车主 4S Dealers 4s 店 Car Fair 车展 Defending Rights 维
权 Mercedes-Benz 奔驰 BMW 宝马 Volkswagen 大众 Consumer 消
费者 Banner 横幅 Driver 司机

Law Enforcement
Violence

14 Chengguan 城管 Law Enforcement 执法 Violence 暴力 Vendor 小
贩/商贩 Beat打人 Yan’an延安 Neck脖子 Law Enforcement Person-
nels 执法人员 Guangzhou 广州 Choking 掐住
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C.2 Image Clustering with HDBSCAN

Figure C.1 shows the clustering results from the HDBSCAN algorithm. For simplicity, we

only display the top 10 largest clusters generated by HDBSCAN, with each row representing

a cluster. We randomly sampled 10 images from each cluster. Based on the results, we

can identify interpretable topics within the visual information in the clustered images, such

as screenshots or photos of documents, injuries to protesters, crowd gatherings (often with

police presence), road blockages, blockades of government buildings, and protests involving

banners. These findings are similar to those obtained from the K-means clustering.

C.3 Data Loss of label-level combination

To compare approaches, we set K = 100 directly for vector-level combination and joint

embedding. For label-level combination, we used 10 clusters each for text and image, yielding

100 combined clusters. Figure 8 confirms our prediction: regardless of whether K-means

(left panel) or HDBSCAN (right panel) serves as the final clustering algorithm, vector-level

combination and joint embedding consistently produce significantly lower data loss than

label-level combination. The magnitude of this data loss is substantial—selecting just the

top 25 clusters under K-means excludes over 50% of observations, while the same selection

under HDBSCAN excludes over 90%. Comparing the two joint methods, joint embedding

slightly outperforms vector-level combination with marginally lower data loss rates.

Appendix D Robustness checks for vector-level combi-

nation and joint embedding

We provide the visualizations for the 10 biggest clusters with the clustering algorithm of

HDBSCAN in Figure D.1 and Figure D.2 as robustness check. For these two results, we

are using the same embedding scheme, and the flat clustering option for HDBSCAN to set
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Figure C.1: The HDBSCAN clustering for image clustering. Each row show a random sample
of ten images from one cluster. Only clusters with size over 100 are displayed due to space
limit.

13



K = 20. The result for vector-level combination is shown at Figure D.1, and the result for

joint embedding with CLIP is shown at FigureD.2.

Figure D.1: The Top 10 biggest clusters in vector-level combination (BERT + ResNet-
Places365) with HDBSCAN flat clustering (K = 20).
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D.1 joint embedding in with HDBSCAN

Figure D.2: The Top 10 biggest clusters in joint embedding (CLIP) with HDBSCAN flat
clustering (K = 20).
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Appendix E Human validation

We propose within-cluster consistency to measure how well clustering solutions identify in-

ternally coherent clusters. The procedure follows a similar approach to Zhang and Peng

(2024), but extends to settings where the original data (social media posts) contain both

text and images.

• Choosing documents to code: For each of the three methods (label-level combination,

vector-level combination, and joint embedding), and for each K value tested (K=20,

25, 30), we randomly selected 10 original social media posts containing both text and

images from each cluster. This stratified random sampling ensured representation

across all clusters regardless of size, yielding a total of 3 methods × (20 + 25 + 30)

clusters × 10 posts = 2,250 posts.

• Text Theme Identification: Coders assigned a common “text” theme for each cluster

based on textual content only. They then gave specific labels to individual posts within

the cluster.

• Image Theme Identification: Coders assigned a common “image” theme for each cluster

based on visual content only. They then gave specific labels to individual images within

the cluster.

• Joint Theme Identification: Coders assigned a common “joint” theme for each cluster

based on the integrated content. This labeling occurred after separate text and image

coding to allow comparison between unimodal and multimodal interpretations.

• Coder training: At the beginning of the coding process, three coders independently

coded 10 randomly selected clusters (10 posts per each cluster) to establish baseline

consistency. We then resolved discrepancies through discussion and refined our cod-

ing manual. Following this calibration phase, two coders separately completed the

remaining coding.
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• Cluster Label Assignment: After the human coding, the first authors picked out those

descriptions as cluster names by exact keyword overlap (e.g., “road blockade,” “banner

protest”) or, when wording differs, by a two-out-of-three author vote on semantic

equivalence. Then, the authors rephrased the cluster labels with terms in natural

language for improving interpretability.

• Consistency Score Calculation: The within-cluster consistency score (α) represents

the proportion of posts in a cluster that match its primary theme (defined as the most

frequently assigned theme by coders). If there are 7 posts whose theme is ”protests

related to fraud in front of government office” out of the 10 sampled posts, then the

consistency score is 0.7. Higher scores indicate greater thematic coherence within

clusters.

Figure E.1: Within-cluster consistency. Average within-cluster consistency (M) is high-
lighted in red and the exact values of the average within-cluster consistency is shown on the
top of each bar. Nineteen clustering solutions are shown, varying by the number of clusters
and methods to map images into vectors.
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Appendix F Detailed results for gun violence dataset

F.1 Cross-modality correlations and selecting K

Figure F.1 shows the heatmap of cross prevalence with label-level combination (label-level

combination). The rows list the OpenAI text labels and the columns list the Google Mul-

timodal image cluster. Darker cells along the reordered diagonal show that certain image-

cluster labels consistently accompany the same text-cluster labels, revealing moderate cross-

modal alignment in this professional news dataset.

Figure F.1: Permuted co-occurrence heatmap between text labels (OpenAI) and image clus-
ters (Google Multimodal) on the BU-NEmo dataset. Each cell shows the percentage of
headline–image pairs that fall into the corresponding text–image label combination. Stronger
alignment appears as darker diagonal blocks, indicating which image clusters most frequently
accompany each text topic.
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Figure F.2: Marginal absolute S_DbW gain for BU_NEmo dataset related to gun violence.

F.2 Results for the gun violence dataset (BU_NEmo): label-level

combinations

F.3 label-level combination (K = 5 * 5)

For label-level combination, Table F.1 shows the textual clusters, and Figure F.3 shows the

image clusters. The content for the text clusters varies in the scope for different events: from

more generic news about politicians and judges’ stances and actions on gun law and policies

(Cluster 1), to the reports of specific shooting events and their aftermaths (Cluster 2，4，

5，7，8). On the other hand, the image clusters capture visual frames from the portraits

of politicians or new hosts (Cluster 0，1，4), to the scenes of public commemorations and

vigils (Cluster 5，6), police dispatchs (Cluster 8), trials (Cluster 9), or protests (Cluster 2)

as the aftermath of shooting events.

For the image clusters, we can see that using K = 5 heavily undercuts the interpretability
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ID of Topic Posts Words with Top 10 Highest TF-IDF Score.
0: Politicians on Gun Control 409 gun, trump, guns, control, nra, florida, california,

new, laws, shooting
1: Shooting Events News Report 371 shooting, pittsburgh, synagogue, victims, man,

suspect, police, shooter, black, gunman
2: School Safety 354 gun, school, shooting, violence, students, control,

parkland, shootings, kavanaugh, mass
3: NRA and Gun Sale Regulation 104 nra, gun, sales, makers, business, ties, york, bank,

delta, amid
4: 3-D Printed Guns 59 3d, 3dprinted, blueprints, guns, printed, judge,

gun, blocks, release, plans

Table F.1: Text Clustering Results (K = 5) with OpenAI text embeddings and K-Means on
BU-NEmo Dataset

of the clustering scheme. Since we set the number of K too low, the internal variance

of meaning within the same cluster becomes too large, and it becomes hard for human

annotators to assign labels for those clusters.

Figure F.3: Image Clustering Results (K = 5) with Google Multimodal image embeddings
and K-Means on BU-NEmo Dataset.
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Figure F.4: Permuted co-occurrence heatmap between text labels (OpenAI) and image clus-
ters (Google Multimodal) on the BU-NEmo dataset at K = 5 for each modality.

F.4 label-level combination (K = 10 * 10)

For label-level combination, Table F.2 shows the textual clusters, and Figure F.5 shows the

image clusters. The content for the text clusters varies in the scope for different events: from

more generic news about politicians and judges’ stances and actions on gun law and policies

(Cluster 1), to the reports of specific shooting events and their aftermaths (Cluster 2，4，

5，7，8). On the other hand, the image clusters capture visual frames from the portraits

of politicians or news hosts (Cluster 0，1，4), to the scenes of public commemorations and

vigils (Cluster 5，6), police dispatches (Cluster 8), trials (Cluster 9), or protests (Cluster 2)

as the aftermath of shooting events.

Figure F.5 shows the image clusters produced by label-level combination (label-level

combination) of the gun violence dataset with k = 10.
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ID of Topic Posts Words with Top 10 Highest TF-IDF Score.
0: School Safety and Armed Teachers 219 school, shootings, guns, shooting, teachers, mass,

schools, trump, gun, doctors
1: Gun Control Legislation 207 gun, california, new, ban, governor, control, signs,

laws, assault, florida
2: Parkland School Shooting Advocacy 196 students, gun, violence, parkland, control, school,

shooting, survivors, march, florida
3: Supreme Court and Gun Rights 141 gun, trump, nra, kavanaugh, control, amendment,

second, brett, guns, trumps
4: Jacksonville Esports Shooting 117 jacksonville, madden, tournament, esports, shoot-

ing, game, gaming, gamers, security, cancels
5: Pittsburgh Synagogue Shooting 108 synagogue, pittsburgh, shooting, trump, suspect,

antisemitic, bowers, hate, attack, robert
6: NRA Corporate Boycott and Pressure 102 nra, gun, sales, business, makers, ties, york, delta,

bank, amid
7: Racially Charged Gun Incident 87 man, black, police, shooting, shooter, school, sus-

pect, gunman, white, teen
8: Las Vegas Shooting Memorial 61 vegas, victims, shooting, las, year, anniversary,

honor, thousand, oaks, mass
9: 3D-Printed Gun Blueprints Ban 59 3d, 3dprinted, blueprints, printed, guns, judge,

blocks, gun, release, plans

Table F.2: Text Clustering Results (K = 10) with OpenAI text embeddings and K-Means
on BU-NEmo Dataset
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Figure F.5: Image Clustering Results (K = 10) with Google Multimodal image embeddings
and K-Means on BU-NEmo Dataset.
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F.5 Joint clustering results: vector-level combination and joint

embeddings

Figure F.6 shows the 5 largest clusters ranked by their sizes for vector-level combination.

Figure F.7 shows the 5 largest clusters ranked by their sizes for vector-level combination.

The rest clusters can be viewed online due to space limitations.

F.6 Data loss for the gun violence dataset (BU_NEmo)
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Figure F.6: Representative images and headlines for the five largest clusters produced by
vector-level combination (Method 2) on the BU-NEmo dataset. Each panel shows five ex-
emplar headline–image pairs illustrating the thematic coherence of each cluster. We used k
= 25 in the clustering.
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Figure F.7: Representative images and headlines for the five largest clusters produced by
joint embedding (Method 3) on the BU-NEmo dataset. Each panel shows five exemplar
headline–image pairs illustrating the thematic coherence of each cluster. We used k = 25 in
the clustering.
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(a) K = 25 (b) K = 100

Figure F.8: Data-loss curves on the BU-NEmo dataset, showing the fraction of documents
discarded when retaining only the top k clusters for each method. label-level combination
(label-level combination, blue) exhibits the lowest data-loss at every k, dropping under 10%
even at k = 25. By contrast, vector-level combination (concatenated embedding, orange)
and joint embedding (joint embedding, green) lose a larger share of observations as they
prune small or noisy clusters. The data loss curves at k = 100 is also attached.
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